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Review: 
The thermal expansion of composites 
based on polymers 

L. H O L L I D A Y ,  d. R O B I N S O N  
Department of Polymer Science, Brunel University, Middlesex, UK 

In the past 25 years, several approaches have been made to the theoretical study of 
thermal expansion of composites. These approaches range from the empirical, to 
sophisticated analyses based on applied mechanics. The alternatives are discussed in the 
following paper, after which the available experimental data are examined in the light of 
current theory. The approach of Kerner and similar workers shows reasonable success for 
those systems where the dispersed particles can be treated as spheres, but this case is of 
limited technological interest. On the other hand, the equation due to Turner most closely 
represents those systems in which the fillers are fibrous or plate-like in nature. Apart from 
particle shape, it appears that any general theory must take into account a number of 
physicochemical variables which have hitherto been omitted. 

Attention is drawn to the possible relationship which exists between bulk modulus or 
Young's modulus, and thermal expansion. This has been pointed out earlier by Barker. 

I. Introduction 
Composites of which the matrix is a polymer are 
of great technological importance, obvious 
examples being GRP and carbon black rein- 
forced rubbers. The essence of the science of 
composites can be expressed as follows: 
If Pi is a given physical property, e.g. coefficient 
of thermal expansion or Young's modulus, and 
Pmi, Ppi and Pei are the specific values of that 
property for matrix, filler and composite respect- 
ively, the science of composites then concerns 
the rules which relate Pei as f(Pmi, Ppi) and the 
other variables of the system. 

Usually these relationships are complex, 
although a few simple properties are additive on 
a volume basis and the linear mixture equation 
(LME) applies, i.e. 

Pei = VmPm q- ( l  - V m ) P p i  (1)  

Here Vm is the volume fraction of the matrix 
phase, the equation representing a two-phase 
system. This relationship is often called the 
mixture rule, or the law of the mixtures, but it is 
neither a rule nor a law. Nevertheless if provides 
a useful baseline and will be called the LME in the 
text. 

�9 1973 Chapman and Hall Ltd. 

In this paper we discuss the theoretical back- 
ground to the thermal expansion behaviour of 
composites based on polymers, and summarize 
previous experimental work. We adopt the 
convention throughout, that c~ represents the 
linear coefficient, and 7 the cubical coefficient of 
expansion. This point is to be particularly 
emphasized, since considerable confusion exists 
in the literature where c~ sometimes represents 
the linear, and sometimes, the cubical coefficient. 
Whilst in an isotropic composite (with which we 
are largely concerned) 

7 = 3 ~  (2)  

in a fibrous composite which is uniaxially 
aligned, and isotropic in the two transverse 
directions, 

7 = c~ll + 2~ •  (3) 

The question is, what is the relationship 
between 7e, 7m and 7p ? Polymers have a much 
higher coefficient of expansion than the inorganic 
materials, such as inorganic glass, with which they 
are combined, i.e. in this case 7m > 7p and we 
have an opportunity to reduce the high expan- 
sion of polymer s. Since polymers show visco- 
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elastic behaviour, it is not evident whether the 
coefficient of expansion of composites is a time- 
dependent property or not. 

The thermal expansion behaviour of  compo- 
sites has received a certain amount of theoretical 
study by Kerner and other workers, but there 
has been little systematic experimental work, and 
no serious attempt to check these theories on a 
variety of systems. Thermal expansion involves 
the transmission of stresses across an interface, 
and should thus throw light on the adhesion 
between the phases. In addition, the thermal 
expansion behaviour is closely related to the 
elastic properties of the phases, as Barker and 
others have shown. It is possible that the 
measurement of this simple property may enable 
an estimate to be made of Young's or bulk 
modulus of the composite, the latter being 
difficult to measure by simple experimental 
methods. 

2. The status of existing theory 
Consider a random two-phase composite which 
is isotropic. Each phase is assumed homo- 
geneous and isotropic, and linearly elastic over a 
small range of volumetric strains. One phase, 
subscript p, is dispersed in a polymer phase, 
subscript m, and 7m > 7p. The composite has the 
cubical coefficient of expansion 7e. No limitation 
is placed on the size, size distribution, shape or 
other aspect of the particle geometry at this stage, 
other than that the composite itself is isotropic. 

Such a composite will be prepared at a tempera- 
ture above ambient, whether thermoplastic or 
thermoset. In the process of cooling, each phase 
will shrink, but the shrinkage of the matrix will 
be restrained by the particles, thus setting up 
compressive stresses across the interface, see [1 ]. 
In time these stresses may be relieved or reduced 
by non-elastic deformations in the matrix. 

When the composite is heated, the matrix will 
wish to expand more than the particles, and if the 
interface is capable of transmitting the stresses 
which are set up, the expansion of  the matrix 
will be reduced. In the theoretical treatments to 
be described, it is invariably assumed that the 
adhesion at the interface is adequate to with- 
stand these thermal stresses. (To provide back- 
ground for this assumption, we calculate that the 
thermal stress for a system of polyethylene with 
an inorganic filler can amount to 7 x 105 N m -2 
~ C -1 based on Equation 10 in [7].) 

There are enough experimental data scattered 
throughout the literature to check the validity of 
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current theory, and this is discussed below. 
Meanwhile we begin by considering two situa- 
tions which give useful guidelines, and then 
consider the existing theories in two classes. 

2.1. There is no adhesion between the 
phases 

If there is no adhesion between the two phases, if 
7m > )'p and if there are no residual compressive 
stresses across the interface, then on heating the 
composite the matrix will expand away from the 
particles. In this case 7o = 7'm and is independent 
of composition. This is shown as line AB in Fig. 1. 
This line, which in any case is largely hypothetical 
terminates at a point where the polymer ceases to 
be the continuous phase because of the increase 
in volume fraction of the other phase. 

A NO ADHESION. B 

C 

o , o  Vl ~ p.o 

Figure 1 Two hypothetical cases of thermal expansion 
behaviour. 

2.2. The matrix phase  behaves  as  a liquid 
The line AC shows the linear mixture equation 
(Equation 1 above). This can be rewritten 

7e = 7p + vmcTm - Vp) (4) 

This line, of slope 7m - 7p, applies if the matrix 
behaves as a liquid, since its validity depends 
upon each phase expanding unhampered by the 
other. It will also apply fortuitously if, in the 
general function 

7r = f(Vm, 0'm, 7 p ' .  ") (5) 
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the derivative 

d7e 
d V - 7m -- yp 

for a particular combination of properties. 
Although the linear mixture equation has no 

o r  7e : general significance, it is not uncommon to 
encounter systems where it applies, e.g. natural Thomas 
rubber filled with sodium chloride particles [2]. 

2.3. Theoretical  equat ions  for spherical and 
other  particles 

A dispersion of spheres has a relatively small 
effect on the thermal expansion of a polymer 
matrix as will be shown later. It has attracted the Cribb 
greatest theoretical interest since it presents an 
easier problem than an arrangement of fibres or where 
platelets. 

Alternative equations are now shown and are 0~ - 
discussed briefly below. These assume perfect 
adhesion. 

2.4. List of equat ions  
Special case of spherical particles: 

Kerner 
7e = VmTm + Vp7p - (Tin - 7p) Vm ~% 0 

Where 

= 

Blackburn* 
7e = 7P + 

(1 /Km) -- (1/K]a) 

(Vp/Km) + (Vm/Kp) + (3/4Gin) 

3/2(l - Up) Vm(Tm - 7p) 
�89 + vp) + Vm(1 - 2vv) + (1 - 2Vm) Ep/Em Vp 

Wang and Kwei 

~,o = 7m -- Vp 0 (~'m -- 7i,) 

where 

0 =  
(3Ep/Em) Vp 

(Ep/Em) (2 Vp(1 - 2Vm)+(1 + Vm))+ 2Vm(1 - 2vp) 

Tummala and Friedberg 

7e = 7m - Vp0'm - 7p) 0 (9) 

where 

0 =  
(1 + Vm)/2Em 

(1 + Vm)/2Em + (1 -- 2vp)/Ep 

General equations : 
Turner 

7m V m X m  + 7p VoKp 
7~ = Vm Km + Vp K,  

7m Vm E m +  "~p Vp Ep i f  Vm = Vp 

Vm Em + Vv Ep 

7c ~ =  VmTm ~ + VpTo ~ 
where "a"  may vary from - 1 to + 1 
or In ye = Vm In 7m + Vp In 7P 

if "a"  is small 

(~0) 

(ll) 

7e = 01 7m + 02 7p (12) 

Km(Ke - Kv) Kp(Km - Ke) 
Ke(Km Kp) 02 = Ke(Km - Kp) 

In these equations K represents bulk modulus, E 
Young's modulus, G shear modulus and v 
Poisson's ratio. The other symbols are indicated 
in the text. 

2.4.1. The dispersed phase is made up of 
(6) spherical particles 

(a) The equation of  Kerner 
Kerner [3] made the first sophisticated analysis 
of the thermoelastic properties of  composites. 
The composite is assumed to be macroscopically 
isotropic and homogeneous, and it is assumed 
that the dispersed phase is in the form of grains 
suspended in, and bonded to, a uniform medium. 
The grains are distributed spatially at random, 
and they are spherical The model considers an 

(7) average grain surrounded by an average shell of  
suspending medium. Beyond this, there is the 
average medium with properties identical to 

(8) those of the composite. 
Examination of the Kerner equation shows 

that the third item, i.e. (Tin - 7p) Vm VpO, can be 
considered to represent the deviation from the 
LME. This term disappears if 7m = T p  or 
K m =  Kp. Furthermore, having fixed the proper- 
ties of the constituent phases, the coefficient of 
expansion of the composite is regarded as being 
solely a function of the volume fraction. Any 
effect of particle size is neglected. 

(b) The equation of Blackburn 
Arthur and Coulson [4] refer to an equation of 

*Corrected - this equation is quoted incorrectly in Reference 4. 
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Blackburn which was derived for the case of 
spherical particles in a matrix at low concentra- 
tions. They applied it to uranium dioxide/ 
stainless steel cermets, where it agrees with 
experiment up to 10~ volume of UO2, after 
which it gradually diverges. This is attributed to 
poor adhesion in this particular case. 

(c) The equation of Wang and Kwei 
In a recent publication, Wang and Kwei [5] have 
investigated the thermal expansion of filled 
polymers. The model is similar to that used by 
Hashin [6] for evaluating the elastic constants of 
heterogeneous materials, and considers the 
composite to be an assemblage of tiny spherical 
composites each made up of a filler particle 
surrounded by a shell of polymer. 

In the original paper, the equation is set out in 
terms of the linear coefficient of expansion, but 
for the sake of consistency we use the cubical 
coefficient above. 

(d) The equation of  Tummala and Friedberg 
Tummala and Friedberg (7) have considered the 
thermal expansion of dilute binary composites 
where the dispersed particles are treated as 
elastic spheres. Examination shows that the term 
0 is a constant for a given system since it is not a 
function of the volume fraction of either phase. 
This gives a straight line, emphasizing that it can 
only be valid over a limited range.Where Ep >~ Em 
0 will not deviate greatly from unity, in which case 
the equation approaches closely to the LME. 

2.4.2. No restriction is placed on the shape of 
the suspended particle 

This represents the most general case and, 
although it cannot be treated satisfactorily at the 
moment, it has been considered by three workers. 

(a) The equation of Thomas 
In 1960, Thomas [8] put forward an empirical 
equation which is given in the above list. The 
exponent "a"  may vary from - 1  to +1, 
depending on the particular system. At these 
limits, the equation takes the following forms: 

a ~  m l  
1 Vm+G 

yc  y m  )"p 

a = + l  )tc = V m y m  -}- V p y p  

These are formally analogous to the Reuss and 
Voigt bounds for bulk moduli, and represent such 
wide extremes that most data can be accommo- 
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dated within them. The empirical nature of the 
equation makes it suitable for most filled systems 
by the correct use of the adjustable constant. 

(b) The equation of Turner 
The earliest paper on the subject with which the 
authors are familiar is that of Turner [9]. 

The Turner equation is identical with the 
LME ifKv = K m  (this is an unlikely situation for 
the case of an inorganic filter in a polymer 
matrix). 

The basic assumptions behind the equation 
are that "each component in the mixture is 
constrained to change dimensions with tempera- 
ture changes at the same rate as the aggregate 
(composite), and that shear deformation is 
negligible." 

The assumption, that each material behaves 
like the composite is equivalent to an assumption 
of uniform strain. The derivation of the equation 
is straightforward and is based on the assump- 
tion of substantial residual microstresses result- 
ing from the restraint of each phase on cooling. 
The equation satisfies the requirements: 

Vm ---- 0 7c  = 7P 

I'm = 1 7e = 7m 

An important weakness of this equation is that 
it states that 7e, the coefficient of expansion of 
the composite, is a unique function of the volume 
fraction of the disperse phase (or matrix, since 
Vp + Vm = 1). Turner realized that this simplifi- 
cation runs counter to the experimental observa- 
tion that particle shape and size can have an 
effect on the coefficient of expansion. 

Kingery has shown [10] that the Turner 
equation applies to at least two ceramic systems 
A1/Si02 and W/MgO, where the samples were 
prepared by pressing and sintering the mixed 
powders. Nevertheless, this sort of agreement is 
the exception rather than the rule. 

(c) The equation of Cribb 
Cribb [11] adopted an approach in which no 
limitations are made on the shape or size of the 
particles. The phases are assumed to be homo- 
geneous, isotropic and linearly elastic. The 
simplicity of his approach is attractive, but it 
converts the problem of calculating 7c to the 
related question of calculating the bulk modulus 
of a composite in the general case. It will be seen 
from the list of equations that to use this equation 
in practice requires a knowledge of Ke or an 
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ability to calculate Ke from the properties and 
volume fractions of  the individual components. 
On the other hand, as pointed out by Cribb, it 
enables one to calculate Ke given a measured 
value of  7e and knowing the required constants of  
the constituent phases. This appears to be a 
valuable feature. 

In his paper, Cribb suggests that the bounds of 
Reuss and Voigt may be used to calculate Ke, but 
these are too far to be generally useful (see Fig. 
2). As an alternative, the bounds derived by Hill 
[12] may be used. In Fig. 2 these are shown as 
the Cribb-Hill bounds. Furthermore, if the 
particles can be regarded as spheres, the equation 
of  Kerner [2] may be used to calculate Ke. This 
takes the form: 

Ke = (Kin Vm)/(3Km+ 4Gin) + (K~ Vp)/(3Kp + 4Gin) 
Vm/(3Km + 4Gin) + Vp/(3Kp + 4Gin) 

. . . . .  ( 1 3 )  

2 0  

A somewhat similar approach by Hobbs  [11 ] 
requires the bulk modulus of  a composite 
containing pores in place of  aggregate particles. 
In view of this difficulty it will not be discussed 
further here. 

3. Discuss ion  
3.1. Thermal  expans ion behav iour  

The foregoing summarizes the methods available 
for predicting the coefficient of  expansion of an 
isotropic composite. The equations are plotted in 
Fig. 2 for the following hypothetical case, which 
is close to the nylon-silica system: 

assumed that 

~rn = 20 x 10 -5 ~ yp = 1 • 10 -5 ~ 

Km = 4 x 104bar, Kp = 4 x 105bar 

Vm0.33, Vp 0.17 

18 

16 

14- 

12 

x I0  

;x:~ ~ 

0.0 0.1 0.2 0.3 0 4  0.5 0 .6  0 .7  O.B 

Figure 2 Theoretical graphs of ~,e versus Vp for a hypothetical composite. 

Key: i. Linear Mixture Equation, Tummala, Cribb 5. Thomas (a = 0.1) 
(Ruess bound) 

2. Cribb (Hill bound) 
3. Kerner, Wang and Kwei 
4. Thomas (a = 0.5) 

0.9  I.O 

6. Cribb (Hill bound), Blackburn 
7. Turner (using K), Cribb (Voigt bound) 
8. Turner (using E), Thomas (a = 1.0). 
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Figure 3a Coefficient of cubical expansion versus volume fraction for a range of composites containing particulate 
fillers. (See Table 3a for materials) 
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calculated from 

Em 4 x 10abar, Ep 8 x 105bar 

Gm 1.5 x 104bar, Go 3.4 x 105bar 

Predictions for composites containing 
spherical particles are shown as curves 1, 3 and 6, 
which represents rather a wide spread. The 
general equations are bounded by curves 1 and 8, 
which is an even wider spread. How do these 
curves compare with experiment ? 

There is enough information scattered in the 
literature to enable us to gain some idea of the 
thermal expansion behaviour of  a range of  
composites. The results are shown in Figs. 3a 
and b, the key to which is shown in Tables IA and 
B. For  convenience the curves have been 
extrapolated to Vp = 1.0 but in general, results 
were only available up to Vp = 0.5. The main 
source of information is [13], but some unpub- 
lished results are also included [14]. It  will be 

seen that the polymers quoted cover a wide range 
of coefficients from Styrocast polyester resin 
(7'm = 9 • 10 -5 ~ -1) to polyurethane rubber 
(ym = 72 • 10-5~ Similarly, the fillers 
cover a wide range of expansivities, f rom glass 
(0.5 • 10 -5 ~ -a) to sodium chloride (14 • 10 -~ 
~ Although little information is available 
on this point, there is a wide range of shapes and 
sizes of  fillers included. Since Figs. 3a and b are 
complicated, the data have been normalized and 
plotted in a block-diagrammatic form in Fig. 4. 

The existing data can be further analysed as 
follows: 
The various equations of  Kerner etc. discussed 
earlier are of  the following general form: 

ye = f(T'm, Yp, Vm, Xm, Xp, Xe) (14) 

Where X represents one or more of the elastic 
constants - bulk modulus, Young's  modulus and 
Poisson's ratio. The differential (dT, e/dVm ) Vm-+l 

35 

"~xD 

3O 

25 

20 

~5 

tO 

\. 

0 O 0.1 0.2 0.3 0.4 0 5 O. 6 0.7 0.8 0.9 1.0 

Figure 3b Coefficient of cubical expansion versus volume fraction for a range of composites containing fibrous 
fillers. (See Table 3b for materials). 
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TABLE 1A Materials code for Fig. 3a 

Code Matrix material Filler 

L Polyester resin 
M Phenolic resin 
N Phenolic resin 
O Epon 828 
P Epon 828 
Q Polyester resin 
R Polyester resin 

S Epon 828 
T Epon 828 

T 1 Epon 828 
U Epon 815 
V Polyester resin 
W Epon 828 
X Polyester resin 
Y Polyester resin 
Z Epoxy resin 
AA Polymethylmethacrylate 
BB PMMA 
CC PMMA 
DD PMMA 
EE 50:50 Epon 828-polyamide 

resin 
FF 50:50 Epon 828-polyamide 

resin 
GG 50:50 Epon 828-polyamide 

resin 
HH 50:50 Epon 828-polyamide 

resin 
II 50:50 Epon 828-polyamide 

resin 
JJ Polypropylene 
KK Polytetrafluorethylene 
LL PTFE 
MM PTFE 
NN PTFE 
DO PTFE 
PP PTFE 
QQ PTFE 
RR PTFE 
SS PTFE 
TT PTFE 
UU PTFE 
VV Polyethylene (LD) 
WW Polyurethane rubber 

Quartz powder 
Aluminium oxide 
Channel black 
Quartz powder 
Titanium dioxide 
Calcium carbonate 
Lithium aluminium 
silicate 
Calcium carbonate 
Lithium aluminium 
silicate 
Aluminium oxide 
Quartz powder 
Titanium dioxide 
Aluminium powder 
Aluminium oxide 
Aluminium powder 
Glass powder 
Calcium carbonate 
Aluminium oxide 
Zinc oxide 
Silica 
Lithium aluminium 
silicate 
Titanium dioxide 

Aluminium oxide 

Calcium carbonate 

Aluminium powder 

Glass powder 
Litharge 
Boron carbide 
Calcium boride 
Iron powder 
Calcium carbonate 
Iron oxide (Fe2Oz) 
Quartz powder 
Cobalt/iron alloy 
Titanium dioxide 
Barium titanate 
Mica powder 
Glass powder 
Sodium chloride 

represents the slope of the curve at a low filler 
concentra t ion,  and this slope is a way o f  character- 
izing a composite. Examina t ion  of Fig. 3 shows 
that  (d)'e/dVm)Vm---~ 1 may  be positive or 
negative, and  if positive it may be greater or less 
than  (Tin - 7p) which is the slope of the LME. 
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In  order to analyse this data, we adopt  the 
approach that  the slope of ~e against Vm curve is 
a measure of the " in terac t ion"  between the two 
phases, and  that  this can be compared as follows. 
The data is normalized by dividing the initial 
slope of the curve (1.0 > Vm > 0.8) by the slope 
of the corresponding L M E  and  the resulting 
parameter  

(d'ye/dgm)/(~m - ~tl~) (15) 

TABLE 1B Materials code for Fig. 3b 

Code Matrix material Filler 

A Polycarbonate Glass fibre 
B Epon resin Glass fabric 
C Polyester resin Glass fabric 
D SAN Glass fibre 
E SAN Glass fibre 
F Phenolic resin Glass mat. 
G Nylon 6 Glass fibre 
H ABS Glass fibre 
I Polystyrene Glass fibre 
J HIPS Glass fibre 
K Nylon 6 Glass fibre 

O.O Vp I.O 

~ pT, EE.+ WIDE RANGE OF INORGANIC POWDERS, 

THERMOPLASTICS + WIDE RANGE OF INORGANIC POWDERS. 

THERMOSETS "F GLASS FABRIC. 

I ~  T HERMOPLASTICS -F GLASS FIBRE, 

Figure 4 Normalized block diagrammatic form of Figs. 3a 
and 3b. 
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f o r  t h e  a v a i l a b l e  d a t a  is l i s t ed  in  T a b l e  I I .  F r o m  

F ig .  2, it wi l l  b e  s e e n  t h a t  a c c o r d i n g  t o  K e r n e r ' s  

e q u a t i o n  (va l id  f o r  s p h e r i c a l  p a r t i c l e s )  t h e  r a t i o  

is = 1.3 w h i l s t  a c c o r d i n g  t o  t h e  T u r n e r  e q u a t i o n  

t h e  r a t i o  is q- 4 .7  f o r  o n e  h y p o t h e t i c a l  s y s t e m .  

T h e  e x p e r i m e n t a l  d a t a  s u m m a r i z e d  in  T a b l e  I I  

s h o w s  t h a t  t h i s  r a t i o  v a r i e s  f r o m  - 0 .64  t o  + 4.6,  

a v e r y  w i d e  s p r e a d .  T h e s e  e x t r e m e s  a r e  g i v e n  b y  

t h e  s y s t e m s  m i c a  p o w d e r ,  in  P T F E  a n d  g l a s s  

f i b r e s  in  p o l y c a r b o n a t e .  A c o m p a r i s o n  o f  t h e o r y  

w i t h  e x p e r i m e n t  s h o w s  t h e  i n a d e q u a c i e s  i n v o l v e d  

in  t h e  t h e o r e t i c a l  p r e d i c t i o n s ,  a l t h o u g h  T u r n e r ' s  

e q u a t i o n  a g r e e s  q u i t e  we l l  w i t h  t h e  f ibre- f i l led  

c o m p o s i t e s .  

T o o  m u c h  r e l i a n c e  s h o u l d  n o t  b e  p l a c e d  o n  t h e  

p a r a m e t e r  l i s t ed  in  T a b l e  I I ,  b e c a u s e  all  t h e  d a t a  

T A B L E  I I  Summary of available data on thermal expansion behaviour of  polymer-based composites 

Matrix material Filler Slope of  L M E  Slope of exp. S(EXP) 
line S(LME) line S(EXP) S(LME) 

Fibre 
Polycarbonate Glass - 0.41 - 1.9 4.6 
S A N  Glass - 0.41 - 1.7 4.1 
Nylon 6 Glass - 0.52 - 2.0 3.8 
HIPS Glass - 0.52 - 1.8 3.5 
Nylon 6 Glass -- 0.62 -- 2.2 3.5 
ABS Glass - 0.47 - 1.6 3.4 
SAN Glass - 0.41 - 1.4 3.4 
Polystyrene Glass - 0.40 - 1.2 3.0 
Polystyrene Glass - 0.41 - 1.2 2.9 

Fabric 
Epon resin Glass - 0.36 - 1.5 4.2 
Polyester resin Glass - 0.36 - 1.4 3.9 
Phenolic resin Glass - 0.30 - 0.77 2.5 

Metal  oxide powders 
Polyethylene Ferric iron - 0.84 - 3.3 3.9 
Polyethylene Scandium - 0.87 - 2.7 3.1 
Polyethylene Germanium - 0.86 - 2.6 3.0 
Polyester resin Titanium - 0.32 - 0.53 1.7 
Phenolic resin Aluminium - 0.26 - 0.45 1.7 
P M M A  Aluminium - 0.37 - 0.55 1.5 
Epon 828 resin Titanium - 0.29 - 0.40 1.4 
Epon 828/polyamide resin Titanium - 0.46 - 0.65 1.4 
P M M A  Zinc - 0.37 - 0.48 1.3 
Epon 828 iesin Aluminium - 0.29 - 0.37 1.3 
Epon 828/polyamide resin Aluminium - 0.46 - 0.59 1.3 
Polyester resin Aluminium - 0.33 - 0.41 1.2 
PTFE Ferric iron - 0.72 - 0.20 0.28 
PTFE Titanium - 0.72 - 0.02 0.02 

Other powders 
P M M A  Calcium carbonate - 0.26 - 0.61 2.3 
Polypropylene Glass powder  - 0.93 - 2.0 2.2 
Polyester Calcium carbonate - 0.32 - 0.67 2.1 
Polyester Aluminium powder  - 0.22 - 0.41 1.9 
Polyester Lithium aluminium silicate - 0.31 - 0.60 1.9 
Epon  815 Quartz powder  - 0.39 - 0.64 1.6 
Phenolic resin Channel black - 0.28 - 0.43 1.5 
Epon 828 Calcium carbonate - 0.28 - 0.42 1.5 
Epoxy resin Glass powder  - 0.37 - 0.52 1.4 
Epon 828 Aluminium powder  - 0.18 - 0.26 1.4 
Epon 828 Lithium aluminium silicate - 0.28 - 0.38 1.4 
Epon 828/polyamide resin Lithium aluminium silicate - 0.45 - 0.57 1.3 
Epon 828/polyamide resin Calcium carbonate - 0.45 - 0.57 1.3 

Table H contd. 
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T A B L E  I I  c o n t i n u e d  

M a t r i x  m a t e r i a l  F i l l e r  S l o p e  o f  L M E  S l o p e  o f  exp .  S ( E X P )  

l ine  S ( L M E )  l ine  S ( E X P )  S ( L M E )  

E p o n  8 2 8 / p o l y a m i d e  r e s i n  A l u m i n i u m  p o w d e r  - 0 .35  - 0 .42  1.2 

E p o n  828  Q u a r t z  p o w d e r  - 0 .27  - 0 .32  1.2 

S t y o c a s t  r e s i n  Q u a r t z  p o w d e r  - 0 .15  - 0 .16  1.1 

P o l y e t h y l e n e t  G l a s s  p o w d e r  - 1 .36  - 1.5 1.1 

P o l y u r e t h a n e  r u b b e r  S o d i u m  c h l o r i d e  - 1 .22  - 1.4 1.1 

P M M A  Si l i ca  - 0 .39  - 0 .40  1.0 

P T F E  C a l c i u m  b o r i d e  - 0 . 64  - 0 .66  1.0 

P T F E  P o w d e r e d  i r o n  - 0 .72  - 0 .46  0 .64  

P T F E  Q u a r t z  p o w d e r  - 0 . 76  - 0 .15  0 .20  

P T F E  C o b a l t / i r o n  a l l o y  - 0 .72  - 0.11 0 .17  

P T F E  C h a l k  - 0 .62  + 0 .08  - 0.01 

P T F E  B o r o n  c a r b i d e  p o w d e r  - 0 .76  + 0 .12  - 0 .02  

P T F E  B a r i u m  t i t a n a t e  p o w d e r  - 0 .74  + 0 .23  - 0.31 

P T F E  M i c a  p o w d e r  - 0 . 72  § 0 .46  - 0 .64  

I n f o r m a t i o n  f r o m  [13] a p a r t  f r o m  t w h i c h  c o m e s  f r o m  [14] .  

used are not equally reliable. Nevertheless the 
following points can be made. 
(a) It is possible to reduce markedly the thermal 
expansion of isotropic plastics by the use of the 
correct filler.The greatest effect is caused by glass 
fibres and fabrics. 
(b) Generally speaking, powders show a smaller 
effect but there is a considerable spread in the 
results. 
(c) The behaviour of PTFE is strikingly unusual. 
(d) The thermal expansion of composites in which 
the filler is fibrous is closely predicted by Turner's 
equation. 
(e) Several equations especially those of Kerner, 
and Wang and Kwei apply quite well to those 
matrices containing spherical filler particles. 

There are indications that the existing 
theoretical approaches summarized above and 
exemplified by Fig, 2 ignore idiosyncratic features 
of  real systems, such as particle size and shape, 
interfacial area, polarity of polymer and particles 
etc. This is seen by comparing Figure 2 with 
Figure 4. The best approach will take account of 
the physicochemical and shape factors involved. 

3.2. Thermal expansion and elastic constants 
In two papers [15] Barker demonstrated an 
approximate relationship between elastic moduli 
and thermal expansivities. Apart from a small 
number of exceptions, the following equation is 
valid: 

Eo~ 2 ~ 15 Nm -2 ~ (16) 
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The probable error bounds lie at Eo~ 2 values of 
7.5 and 24 Nm -z ~ -S, the materials which 
conform to this equation being called "main 
sequence" substances. In this equation, ~ is the 
coefficient of linear expansion. Among the 
numerous examples plotted by Barker are 24 
plastics, six of which are composites. For an 
isotropic and homogeneous solid it should be 
possible to write: 

E~/2 ~ 135 Nm -2 ~ -2 (16a) 

since 7 = 3~ under these circumstances. 
Furthermore since 

E 
K -  

3(1 - 20  

for isotropic solids, the following approximate 
relationship will apply: 

3K(1 - 2v)72 -~- 135 Nm -~ ~ -2 (17) 
and if v is a constant for the materials under 
consideration, then Ky 2 =  constant, an equa- 
tion analogous to Equation 16. This possibility is 
suggested in Barker's second paper. It is also 
possible to calculate Ke from ~c according to 
Cribb's equation, given basic data on the com- 
ponents. 

Finally, there is evidence in the literature 
[16, 17] of a relationship between bulk modulus 
and hardness, so conceivably there is a relation- 
ship between hardness and coefficient of expan- 
sion for the composites under discussion. 
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